6 research outputs found

    Knowledge-defined networking

    Get PDF
    The research community has considered in the past the application of Artificial Intelligence (AI) techniques to control and operate networks. A notable example is the Knowledge Plane proposed by D.Clark et al. However, such techniques have not been extensively prototyped or deployed in the field yet. In this paper, we explore the reasons for the lack of adoption and posit that the rise of two recent paradigms: Software-Defined Networking (SDN) and Network Analytics (NA), will facilitate the adoption of AI techniques in the context of network operation and control. We describe a new paradigm that accommodates and exploits SDN, NA and AI, and provide use-cases that illustrate its applicability and benefits. We also present simple experimental results that support, for some relevant use-cases, its feasibility. We refer to this new paradigm as Knowledge-Defined Networking (KDN).Peer ReviewedPostprint (author's final draft

    Knowledge-defined networking

    No full text
    The research community has considered in the past the application of Artificial Intelligence (AI) techniques to control and operate networks. A notable example is the Knowledge Plane proposed by D.Clark et al. However, such techniques have not been extensively prototyped or deployed in the field yet. In this paper, we explore the reasons for the lack of adoption and posit that the rise of two recent paradigms: Software-Defined Networking (SDN) and Network Analytics (NA), will facilitate the adoption of AI techniques in the context of network operation and control. We describe a new paradigm that accommodates and exploits SDN, NA and AI, and provide use-cases that illustrate its applicability and benefits. We also present simple experimental results that support, for some relevant use-cases, its feasibility. We refer to this new paradigm as Knowledge-Defined Networking (KDN).Peer Reviewe

    Consensus statement: Virus taxonomy in the age of metagenomics

    Get PDF
    Comment in:A sea change for virology. [Nat Rev Microbiol. 2017]International audienceThe number and diversity of viral sequences that are identified in metagenomic data far exceeds that of experimentally characterized virus isolates. In a recent workshop, a panel of experts discussed the proposal that, with appropriate quality control, viruses that are known only from metagenomic data can, and should be, incorporated into the official classification scheme of the International Committee on Taxonomy of Viruses (ICTV). Although a taxonomy that is based on metagenomic sequence data alone represents a substantial departure from the traditional reliance on phenotypic properties, the development of a robust framework for sequence-based virus taxonomy is indispensable for the comprehensive characterization of the global virome. In this Consensus Statement article, we consider the rationale for why metagenomic sequence data should, and how it can, be incorporated into the ICTV taxonomy, and present proposals that have been endorsed by the Executive Committee of the ICTV
    corecore